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1 Montonicity of g; for k > k,, and calculation of ¢,

Since Theorem 1 in the main text relies on calculation of €, := supy> g1 |9(k)| and we cannot
calculate | g(k)| indefinitely, using the conclusion of Proposition 1, whose proof is completed
in the following sub-section, we seek to show that there exists some integer k,, so that g(k:)’
monotonically decreases for integer k > k,,,. By showing monotonicity, we will have deduced

eg=sup |g(k)|, (1)

e >k>K+1

which is readily calculated.
We notice first that )
2
g(k)|” = 2
908 = s e+ ) ®
1 G 1

a(k) = T]&M[k] , bk) = e T]&JNW’ 3)

and therefore monotonic decrease of §(k) with increasing integer k is equivalent to showing
that

(k+1)° (1+ak+1)?+0*(k+1)) —k° (1 +a(k)® +b*(k) > 1, (4)
which is equivalent to showing that
k+4+1)6 — kS
%(1+2a(k+1)+a2(k+1)+b2(k+1)) )
> (2ka(k + 1) — 2ka(k) + ka®(k + 1) — ka® (k) + kb (k + 1) — kb*(k)) .
It is clearly enough to ensure that
(k+1)5 — kS
—r (1=2a(k+1)])
> (2k|a(k + 1)| + 2k|a(k)| + ka*(k + 1) + kb*(k + 1)) .
(6)
‘We choose

kpm = max §R, 624 (7)
v

Using Proposition 1, the inequalities in equation (2.7) in the main text hold, and therefore,

(142.24 x 107%)

< AK? =
|NTK]| < Ak?yo ,  where 7o (1 - 1.61 x 10-3) (1 — 0.051)’ )
AR
[RVIEI| < 590 + (30 = DAR? ©)
It follows at once that for k > k,,,
RA~o A Ao (o — DA
< — 1) — <

|ka(k)| S s + (v 1)yk = 4,/U33/2R2 + V3vR (10)

|Co| | y0A

< 1770 A
o) < 5+ 202, (11)



and
C§ | 2|ColnA | A*HG

v2k5 v2k4 V23’
Therefore, using -, @ is confirmed for k > k,, if

6 (1 =Moo -

ka®(k) + kb* (k) < (12)

A S Ao +4(%—1)A Ci  2|ColyoA A3
V3UR VV33/2R? V3R 9k, R* 9R4 33/2\/UR3’

18R3
(13)
In the parameter space explored, was always valid. We calculated €, based on .
2 Determination of AN[k| and proof of Proposition 1.
Recall that we need to calculate
A [k
NIk = 7@7 ( ‘f) F" (0, k) (14)
with a = k+/v, and F satisfying the Orr-Sommerfield two point boundary value problem
d 2 ’ . ; d 2 .
ar F(y;a) —iaRy ar @ F(y;a) =0, (15)
F(0;0)=0, F'(0;a)=1, F(l;,a)=0 , F'(1;a)=0. (16)

Using vorticity, w = (f—; — a2) F, it is clear that we may write

w(y) = C1Ai(z) + CoAi(wz), z= (iaR)l/3 <y - zg) , where w=¢€"/3  (17)
It follows that
F(y,a) = C1A1(y; o) + CaAa(y; ) + Cssinh(ay) + Cy cosh(ay) , (18)
where, with 2’ = (iaR)'/? (y — ia/R), we define
M) = % [ siuh(aly - ) Ay Ax(ye) = [ sinb(aly - ) A )y

(19)
It is convenient to define images of y = 0,1 under the mapping z(y) to be zg, 21 respectively
and similarly the images of those points under wz(y) to be zo and z3 respectively. Calculation
shows

; R ) iR
zo=e QMR 4 =2 (1 + l) , 2o = e /BaABRT2B, g =2 (1 + i
@ @
(20)
It is to be noted that when a? >> R, each zy and z; are large, with argzy = —m/3 while

argz1 € (—%,7), and indeed close to arg zp when a >> R. Note that A}(0,a) = A1(0,a) =
0 = A3(0,) = A5(0, ). Satisfying boundary conditions ([16) completely determines Cy, Cs,
Cs3 and C4 in and hence F(y; a), which allows us to express

F'(0;a) = (21)



where
D(a) = a (Ax(1) A1 (1) — A1 (1)A5(1))
n(a) = acosh(a)Ny(a) + sinh(a)Na ()

and

Nl(Ol) = BQAl(].) — AQ(l)Bl s NQ(Oé) = BlAlz(]-) — BgAll(l),
Bl(()é) = Ai (Zo) 5 BQ(OZ) = Ai (2’2) .

It is also convenient to define

3/2 172 _ —a -2 1/2
Ap = e%e’ zo/al, Ag =e e o zo/al,

and integrals

1 12 . AL a2

I :/ e %0 FAi(z)dz, I :/ e* *Ai(z)dz ,
zZ0 Z0

23

1/2 1/2

23
I; = wil/ e* *Ai(z)dz, Iy= ufl/ e *2 FAi(z)dz .
zZ2 z

2

It follows from that

1 1
Al(l; a) = % (/\1[1 — )\2]2) 5 All(l; a) = 5 ()\1]1 + )\2[2),
1 , 1
Ag(l; a) = Z ()\1[3 — )\214) s Az(l; Oz) = 5 ()\1[3 + )\2[4) .
Therefore,

A

D(a) (Ial3 — I114)

1 —Q «
TL(OL) = 5 [/\16 (BQIl — Blfg) — )\26 (Bg[g — B1]4)]
and so, using & = ky/v and expression for F” (0, «) in 7 it follows from that

_% an(a) . z/\ioz e @ (BQIl — 81]3) — Age? (BQIQ — 31[4)
2v D(a) )\1/\2 (,[213 — 11]4) ’

Nlk] = Y

2.1 Details of the proof of Proposition 1
Recall from the main part of the paper the functions

d [Hk_l(z, 20)

_ 2 3/2| A _
Ho(2) = exp [3z }Alw, Hie0) = g[S o

}forjzl,

U(z) =2"YV2Hy(z), V(z) =2 (),

Hy(z,29) = mU'(z) + %m%l(z),

s:z_1/2zé/2 , m=(1+s)"",

H — 2 3s 314! 35 5 3 \u
2(z,20) = m*V'(2) + 552" (2) + o T mam (2).

(27)

(32)



We will find convenient sometimes to use Hy(z, z0) = Ho(z). In addition, define

J(r) = (14 1+ (14 72)

We will also need the functions ko v, k1,u, ki,v, €u, €y, ey’ that are defined by equations
(4.39)-(4.42) in Section 4 of the main article.

e (38)

Definition 1. We define the straight line segments Ly and Lo:
Lo:={z:z=204+t(z1—20) , t€[0,1]}, La:={z:2=2z3+1t(z2—23), t€[0,1]}. (39)

Corollary 1. Hy(z) defined in satisfies the following upper and lower bounds at any point
on Lo and Lo in the regime o = k+/v > max {\/gR, ar},

‘Z|_1/4 ‘z|—1/4
2y/m 27
Proof. First we note that either on Lo or La, |2| > |20], since 21 = z(1 + iRa™1) and 23 =
z(1 +iRa™') and 22 = 2. Regime a = ky/v > max {V3R, o, } ensures that |2| > 2 and
argz € [—% %L and using the definition for Hy(z), Lemma 12 of the main article is

applicable and we obtain the given bounds, noting that ko v (z) < ko,u(20) (See Remark 5 in
the paper). |

(1 + k’o’U(Z())) = Co|Z|_1/4 S COlZO|_1/4. (40)

(1—kou(20)) < |Ho(z)| <

Lemma 1. H; defined in for j = 1,2 satisfy the following bounds for any point on line
segments Lo and Lo in the regime o = k+/v > max {\/§R7 ar}, where we define Zg = zg on Lg
and Zg = 2o,

|Hy (2, %) | ,< Cilzo|™"*,  |Ha(2,%0) | , < Calzo| 7%, (41)
where 3 1
=—(1 / — (1 42
Ch 8\/E< +6U(20))+4ﬁ( +€u(20)) , (42)
Co= = L2004 ey (20)) + 2 (14 e (20)) + - (1 + e (z0)) (43)
2= 7\ 32 v (2o 6 v (2o 3 u(2o .
For |H1 (23, z2)|, we also have the sharper bound
|Hy (23, 22)| < Calzs| 7774 (44)
Proof. On z € Ly U Lo,
s=21252 = (1 +iRta™) "% for t € 0,1 (45)

and it is clear that s > 0 and |s| < 1 in both cases, and so |m| = |1 + s|7! < 1. We also
note that for any a > 0, for z on these straight line segments, |z|~* = |zo|*a’s|2a < |z0|7%
Combining with bounds on I/ and ¢/’ in Lemma 12 of the main part, we obtain

1

| 8f|z0|7/4 (1+€/U(ZO))+W(1+GU(ZO)) , (46)

and using we have

< e { g3 (L evlan)) + g (L4 ebGa) + § A ewGo)) } (a7



For Hy(z3, 22), we note from the definition of H;(z, z9) that since s = 2;1/22,;/2 = (1 + iRa‘l)
and m = 1/(1 + s) are each bounded by 1,

! 1 !
|H1 (23, 22)| < [U'(23)] + M’U (23)] (48)

The rest follows from bounds on &/ and U’ in Lemma 12 in the main part, the observation
|z3| > |22| = |20/, and the fact that each of o/, €1,y are decreasing with |z|. [
Lemma 2. Hy(z9) and Hi(z0,20) satisfy the following bound

’H1(207Zo) 1 |< 1 .
Ho(z0) 423/2 = 4z P/2 1,05

(49)
where

—1
3 5 8 5
€10=7 {(1 + T6[20[772 + Sﬁkl,U(ZO)) (1 T [P QﬁkO,U(ZO)> - 1} (50)

Proof. From and Hi(z,z0) = mU'(z) + £m*U(z),

Hl(Zo,Z()) _ 1 U/(Zo)
Ho(0) 8z3/2 223/22/{(,20)

(51)

Using Lemma 12 we obtain

~1
U'(20) 3 5 8 5

=\l T ap tyvrk 1- " +2V7K 52
Ul(z) 4z 1623/2 + 3ﬁ 1,U(20) 4823/2 +2v7 o0,u(%0) , (52)

where K7y, Koy are bounded, respectively, by k1 y and ko, defined in equations (4.39)-
(4.40). Therefore,

Hl(Z()),Zo) 1 1
< 53
TG 1R S e (%)
with €; o as defined above. |
Lemma 3. Define, for t € [0,1],
—2ia? iR\Y? 2ia?
ho(t) = 1+ —t —_— 54
o) = - (1+5%) "+ 2 (54)
2ia? iR 32 9ia? iR\*/?
ho(t) = 1+ —(1—-1¢ — 14+ — . 55
0B )
Then, for any t € [0,1], and with T = %,
d 2
SRho(t) = o [ 1+ _ >a,  (56)
dt (\/5 1+(1+72)1/2+2) (14 (1+72)1/2)
and p
—Rho(t) > 57
dt 2( ) Z ( )
implying in each case that
%ho(t) ,%hg(t) 2 at. (58)



Proof. On differentiation and considering the first case we have

d iR\ d iR 12
—Rho(t) = 14+ —t —Rho(t) = 14+ —(1—t .
Stno(o) = an (1+20) 7 St = av (14 L) (59)
The rest follows from trigonometric simplification of
1
R (1+ir)/? = (1+ 7'2)1/4 cos (2 arctan7> ) (60)

and using integration with initial condition ho(0) =0 = h2(0). |
Corollary 2. On any point on the straight line segment Lo parameterized by t € [0, 1], define,

2
go(t) =3 (2= 4) + 2 (: - 20). (61)

Similarly, on any point on the straight line Lo parametrized by t € [0,1], define

2 /.
ga(t) = 5 (2 = %) + 2% (= = 20). (62)
Then, in either case,

Rygo(t), Rga(t) = 20t (63)
Proof. On Ly using 2(3)/2 = fio%z, z/z0 = 1+ %t, we get in terms of hy defined in the last

Lemma,
go(t) = ho(t) + at = Rgo(t) > 2at. (64)
On L,, using z3/2 = iai;, z/z3 =1+ (1 — ), we obtain in terms of hy(t) defined in the last

Lemma
g2(t) = ha(t) + at = Rg2(t) > 2at. (65)

|

Lemma 4. I defined in may be expressed as

L= —e 33 [HO(ZO) - Hy (20, 0) + — (66)
2z, 2V
where Ry satisfies the bound
|Ri| < 4vme™2 (Co + Cilzol ™2) + 2V/ACal20 ™ i= b (67)
In particular, we have the upper and lower bounds
Crn1]20] 7% < || < Cralz0| 74, (68)
where
=y (00 + Calzo 2 + 2’\%) . Cma=g <1_2€f/’7,§z°) Oyl - 2’%) ~ (69)



Proof. From the definitions of I; and Hy in and 7 we note that
zZ1
I = / e 52 1 (2) de. (70)
Z0

On integration by parts twice, we obtain

Z=Z0

e_z(l)/Z 323/2 1 1/2 2 4372
I = | ———— (Ho(2) + Hi(2, 20)) +/ e"%0 AT Hy(z,20)dz. (71)
ZO + Z1/2 z2=z1 0
Therefore, we are able to write
1 5,3/2 R
Il = 5 72 e~ 3% [HO(ZO) =+ Hl(Zo,zO) + 2f11/4 ; (72)
25 TZ
provided, we identify Ry = Ry 1 + R1 2, where
4 z3/4 -
Rij=— 1/\[ 73 [Ho(21) + Hi (21, z0) e (73)
+
20 21
1
Ry = 4fz3/4/ e W Hy(z, z9)dz . (74)
z0
We note that the exponents in %11, Ri 2 are bounded by e~ 2 and e~2°, respectively. We

also note the global bounds on H; and Hs on any point on the straight line segment Ly
connecting zp to z1 in Lemma Furthermore, since z; = zg (1 + ia) then |z1 /2 1/2| <1
and |1 + 2z ~1/2 1/2| < 1. Further in the integral in Ry 2, with t parametrization of Ly, we

obtain dz = (21— zp)dt = 24t while f e 2atdt < = |20/ ~%/2. With this information,
we readily obtain

2(1’ a2 -

|R12| < 2v/7Cslz0| 2, |Riq| < 4y/me? (Co + 01|Zo\_3/2) ; (75)

from which the first statement of the Lemma follows. The second statement follows from the
first after some algebraic manipulation. [

Remark 1. Note that for large o, ki1 becomes small and approaches zero. The point of the
above Lemma is to show precise bounds when « is some finite number, and therefore makes it
precise how large is large.

Lemma 5. I, defined in may be expressed as

1/2 2.3/2
€7z2 23— 523 1
wI4(z) = 75 (H0(23) + 1]1(23,22) — B4(Z)> 5 (76)
Z;/2+Z;/2 2¢/T|z3| /4

where Ry satisfies the bound
R oa _ _
|Rs| < vmJ <a> {e 2 (Co + C1l 20| 3/2> + G220 3} =: ky, (77)
and J(7) is defined in . In particular 14 satisfies the lower bound

|75 (78)

’exp [22/ 23 + 323/2} 14}

SLENE
T(E)



where
1 —eu(20) 1
Cna = ——5 e
’ 2/ 23/

Proof. Using , since 23/2 = % and z3 = 2o (1 + %), it follows from that

— Cy |z 732 = ky. (79)

23 )
I, = w_l/ exp [—z;/Zz - 323/2} Hy(2)dz. (80)
z2

On integration by parts twice, as for I;, and using the straight line segment Ly for integration,
where dz = (29 — z3)dt = —%zzdt, we obtain

2 3/2} 1, = Ho(zs) + Ha(zs, ) (1 1 )

1/2
z3+ =z — R
3 3 3 Z?l)/2+zl/2 2ﬁ|23|1/4

w exp [22

(81)

where

Ry = vz (1 + z;/2z;1/2) (Ho(22) + Hi (2, 22)) e~ 92D

2iR !
+ 22 Wzg/zz;M (1 + 23 1/2 1/2) / e 92 M Hy (23 + t(zp — 23), 22) dt, (82)
0

with g9 as defined in . Thus the exponential terms are bounded by e~2* and e~ 2% respec-
tlvely Using bounds on H from Lemma (1| for any point z € Ly, and noting 2% f e‘zatdt <

L= z0|” 3/2 the first statement in the Lemma follows very much like the previous Lemma,
except that we have an algebraic factor of

(142227 <Z>1/4} <J (f) .

The second part of the Theorem clearly follows from the first on algebraic manipulation where
we use 2 =1+ % and [z| = |2[. 1

Remark 2. Since
2 322 32

3% 3 “
and Rg2(1) > 2a, while %zg/ =0, it follows that |exp [—7,23/2 221/223] | > €, and the
lower bounds in the previous Lemma show that Iy is exponentially large in o. This exponen-

tially large lower bound for 14 for « large is significant, as it allows massive simplification of
N (k) as we shall see shortly.

+ 252 (20 — 23) = g2(1), (83)

Lemma 6. I> and I3 defined in satisfy the following bounds
2
|I,| < CoRY? |, |exp {—z;/%g + 3z§/2} I3| < CoRY? . (84)
Proof. We take the straight line path L connecting 2y to z; in I in and obtain

1
exp {—323/2} I, = (2 — ZQ)/ e~ 90t 1, (z0 +t(z1 — 20)) dt , (85)
0

where
Go(t) = —tz3? (2120 — 1) + ho(t) = —at + ho(t), (86)



and hg is defined in Lemma[3] from which we can conclude that since Rho > at, we must have

Rgo > 0, implying |e*g0(t)’ <1. (87)
Using global bounds on Hj in Lemma 23/2 = —% and g = |20|73/*RY/? we obtain
R
|| < C’o|Zo|3/4E = CoVR. (88)

For I3 defined in (27)), again using a straight line path of integration z = z3 + (23 — 22) and

23/2 = %, z3/z2 = 1+ £ we obtain
L2, 42 8/2 1 (¢
e %2 #3T35% I3 = (2’3 — 22)/ e 92( )H() (2’3 + t(ZQ — 23)) dt s (89)
0
where in this case
N - 3/2 23 _
gg(t) = —tzy 1-— ; + hg(t) = —at + hg(t)7 (90)
2
with hy defined in Lemma [3| Using that Lemma, Rgo(t) > 0, implying
lem92] <1 (91)
Using bounds on Hy(z) on the line segment Lo in Lemma |lf and dz = —m%du we obtain
—2l/ 22,302 3/4R 1/2
|6 2 T35 13| < Co|22‘ E =CoR"~. (92)
|
Lemma 7. Define
1/2
A1 _ 22’0/ I 5 .3/2 (93)
Ho(z0
Then,
. 1 . s
‘11—1‘1'427/2‘ < Cilzo| ™7, (94)
0
where zolh
A 20| R1 3/2
Ci=——"7—+- 95
1= 9 ev(20) 4|Zo| €1,0 (95)
Proof. Using in Lemma [4| we have
. 1 Hi(z0, 2 1 R
11—1—|— 3/2: 1(0 O)+ 372 —+ 1/41 . (96)
4z Ho(z0) 4z 2y/mzy " Ho(z0)

Hence, from the upper bound on R; in Lemma [4] the lower bound on H(zp) in Corollary
and the bound in Lemma the Lemma follows. ||

Remark 3. It is to be noted that for large |z|, C1 = O(1), since it is clear from and
that €1 o = O(|z0|™%/?) and ky = O(|z0|73).



Lemma 8. N (k) in may be also expressed as

iAOé2 1 -+ E1>
N(k) = T < , 07
(k) i \15 B, (97)
where )
. BQIQ BQB; I1 — I3 2,3/2 B .[2.[3
= B 1, + 7 e~ E, = o, (98)
and have exponential bounds in o as follows
_ R O] 1 2&00
E|<e g (= : 99
| 1|_e (a> <Cm,4+cm,4 ’ ( )
cs 2 —2 R
<20 “og(=).
‘EQ‘ N C’m,4cvm,10[ ¢ J « (10())

Proof. Dividing the numerator of by A2e*Bil4, and the denominator by —A1 o171 14, and
noting the definitions of A\; and Ao,

Mdohly I

_ et 101
)\260‘31]4 2 ’ ( )

we obtain @, with E1, Es, fl as defined above. To determine bounds, we observe that Hy(z)

is real valued for z € R and thus has complex conjugate symmetries, and that 2o = 2z, with

z3/2,z3/2 € iR, and

| Bz| = |Ai(z2)| = |Ai(z0)| = [B1]- (102)
Also, it is clear from upper bounds on I3 and lower bounds on I that
I R R
’73‘ < ‘62z§/223|C7;714|Z0|3/4COR—1/2J (a) = 6—201000;171404(] (a) , (103)
4

and that the same bound applies to % We also note that

I 222/ 25| -1 3/4 —3/4_—Rgo(1) _ —20 —1 R

’I4| < le? |Cm74|zo| Colzo] e =e “CoCy,4J R (104)
Combining, we get the upper bound for F;. For Es we use lower bounds on I, and I; from
Lemmas [f] and [ and combine with upper bounds on I, I3 in Lemma [f] to find

1213 C’gaQ R _92
< — “. 1
I4I1 ‘ N C1m,4cv7n,1 J o c ( 05)

|| = |

Proof of Proposition 1 The stated proposition follows from Lemma [§] if we define

—1
1 . 1
Ea=|1-—— L—1+——r |, (106)
( 428”) ( 423/2>

and the bounds on EF4 as stated in Lemma The exponential bound for F7, Es is obvious in
Lemma For E 4, from estimates in 7 we only have a bound that decays with |29 3. Since
all the constants are monotonically decreasing with |z| = R~2/3a*/3 and J(Ra~1) < J(1//3),
it follows that we can calculate bounds in the regime o = k+/v > max {\/gR, ar}, precisely by

1

evaluation at o = a,, & = e

which results in the quoted values.

10



3 Behaviour of bifurcation point for R >> 1, v << 1, in
the regime Rv'/? >> 1.

We denote N 9[k] as the evaluation of N'[k] for A = 1/2, in which case N'[k] = 2AN /5[k]. We
require the asymptotics of N; s2lk] for fixed k large R, small v in the regime stated. We recall

that _
Mkl = - ( ?(f))) (107)

where D(a) and n(«) are defined in terms of integrals of Airy functions given in §2|in the ESM.
Now, with the restriction given it is easy to note that zg, zo defined in are each small,
since @ = k+/v is small; however, 21, z3 are large since each is clearly O (Rl/ 3pl/ 6). We also
note that arg z; ~ %, arg z3 ~ 2, and the Airy function Ai(z) is exponentially small near z
and exponentially large near z3. Furthermore, rewriting

oo 0 Z1
Iia(z) = / T2 Ai(z)dz + / "2 Ai(z)dz + / T2 Ai(z)dz, (108)
0

20 0o

it is clear that the last integral gives an exponentially small contribution and the leading
two-order contribution comes from the first integral so that we have

1_3Y6 72\ )
Lo=-F—TI|(: . 1
1,2 3 + o (3) ) + O(Zo) ( 09)
It follows that 1/6
I 2
I—j =1+ 6&12;5/2 +O(%0), where a; = 32—7TI‘ <3) . (110)
On the other hand because of exponentially large behaviour at z3 of the integrands for I3 and
I, in (27)), on integrating the known leading order asymptotics of Ai(z) ~ m@_g/?,zs/z, we
find 1
2 _3/2
whyy=———"—e 3% (1Fa+0(a?2")), (111)
2\/%Zg/4 ( ( 3 ))
where we used z;/ 22’3 = —a << 1. Therefore, it follows that
I3 2
= =1-2a+0(a?). (112)
1y
We also have ae™*A\; = zé/QeZg/2 and ae*Ay = zé/ze"zsm, hence we may write
_,3/2 S3/2 ]
on(o) _ Bl (7 =)
D I o (Il
(a) L zpa=2 (IZI? — 1) (113)
B Bia? N _331042 _ 31/3 i /6o A/3 R1/3
1/2 12— T (g) .
ZO Il ZO 3
Therefore, it follows that
N jolk] = _Mk4/331/3 (1 +0 (V1/3R*1/3 1,1/2)) (114)
1/2 A1/3T (%) 5 .

11



Considering the bifurcation point
— 20 RN o[k} = vk, (115)
it follows that for fixed k we have the asymptotic balance

A3 s s 4
implying that A, scales as v*/3R~1/3 whereas

Cy =2k~ Ay {N7 o[k}, (117)

which implies that C} scales as v, but is independent of R to the leading order.

4 Additional quasi-solutions and checking conditions of
Theoreml from the main part.

4.1 Quasi-solution for £ = 1 branch for A =1, R =20 and v = % and
details

. 8
We chose quasi-solution <C07 {Ho(k)} >, given by expressed as rationals so as to avoid any
k=1

round off errors in the computation, given by

8554 12885 1043 435i 1409 5854 302  127i 30 91
1307’ 23828’ 4331 2330’ 55585 7199’ 18357 41559’ 16099 | 36906
36 774 9 3i 4 13i
T 152065 | 168821’ 111589  1407007° 800731 1170328

(118)

with corresponding {N1 /Q[R]}izl obtained from integrals of Airy function, obtained with the
help of symbolic manipulation tool and expressed as rational numbers

21061 888074 35583 497587 126496 1076737 24107 88338
T126378 | 27831 ° 53450 | 7501 ° 84899 ' 10486 ' 9219 | 6089
56973 3942967 109483 1427937 76036  203838i 67113 14277194

T 14279 T 20285 19766 | 5668 ° 10601 | 6397 7621 | 36144

(119)
and with choice K = 8, with help of symbolic computational tools, it is easy to check that

€r <2416 x 107°,  |[Holln <0.9506 , M, < 2.8703, e, < 0.014136 ,
€ <24785x 1077, Cp <27284, ~1q <8450, [Biq <12.623, fo<34.933,
Boq <0.18099 By < 1.51523, M, <3645, €<08803x107*, B, <0.037 (120)

implying that the condition for application of Theorem 1 in the main part is satisfied and hence
there exists solution (C, H) near quasi-solution (Cy, Hy) with

|C' — Co| + || H — Hollp < 2¢ < 1.7606 x 10~ (121)

12



4.2 Quasi-solution for £ = 1 branch for A = g, R =50, v = % and
details

. 12
For quasi-solution <CO, {Ho(k)} > , given by expressed as rationals so as to avoid any round
k=1

off errors in the computation, given by

52299 34717 8178  26965¢ 23247  21767: 14284  39780: 9473 80611
10060° 16727° 5321 98492 ° 26941 35052 ° 105875 68137 68179 36734’

3386 69827 12791  4099i 5668 2758i 1580  2639i 1470 1113
35205 2549437 374382 ' 261327 1013251 ' 218663 1035709 ' 5686007 1009301 ' 1339817
1427 69 434 1614
(122)

2590444 5775137 3969305 1064144

with corresponding {N; /2[]{]}11@2:1 obtained from integrals of Airy function, obtained with the
help of symbolic manipulation tool and expressed as rational numbers

34597 n 197391 79652 n 176077 94039 n 770037 4341 n 92327 96921 n 121883+
84279 6112 * 50645 2573 7 28408 6914 * 802 567 12583 5456
20407 291718+ 39064 165167: 190290 315821: 113933 87187

2028 T 0953 ° 3143 | 4443 12883 6878 6673 | 157
353192 3246797 109469 256797i 160351 3800174
— + - + ,— + (123)
18271 4919 5083 3320 6770 4243

and with choice K = 12, with help of symbolic computational tools, it is easy to check that

er <9316 x 107°,  ||Hollp < 57174, M, < 0.37019, €, < 0.004643 ,
€ <1.1076 x 1070, € < 21165, 1 <12393, B1q<14.124, By, <30.025,
Bo1 < 0.06587 Boo <1.1448 , My <3117, €<291x107%, S, <0.13402 (124)

implying that condition for application of Theorem 1 in the main part is satisfied and hence
there exists solution (C, H) near quasi-solution (Cy, Hp) with

|C'— Co| + ||H — Holl;n < 2¢<5.82x1073 (125)

4.3 Quasi-solution for £ =1 branch A = g, R =100 and v = %

. 20
We chose a quasi-solution was (CO, {HO (k)}

> , given by

48637 58399 45295 16699:¢ 102139 122637 57595 32714:¢ 10345  34465:¢ 33251 162581
20794 152827 15473 36526~ 52823 11941 7 70024 25373 7114736 36889 ' 94515 47621’

12023 5077i 18739 62324 4753 44164 2043  1415i 2453 10904 2074 152
55700 213580 202756 | 112910° 252538 | 97510° 370751 | 66602’ 323823 | 184447’ 503431 | 5441943’
1586 13134 223 7754 267 4734 288 8414 993 71i
T1143277 12517210 1150297 1108116’ 2384990 1609429’ 2723210 _ 13412396 20003308 ' 12032325’
27 121 26 T 4T 42 (126)
15003431 ' 8595382 21306754 = 88612167 29899294 ' 14877883

13



The corresponding {N1 /2[16]}20:1 obtained from integral of Airy function was

24633 587714 40991 986537 20317  162055i 238280 33202¢ 53574  166797i
731499 T 17520 15181 | 13005 ° 5703 | 12583 ' 30497 1735 ' 5041 6346
90446 1004237 73094 1651137 179017 1220027 136517 1984707 14861 3797034

T6673 2028 ° 441l | 3824 9108 2305 ° 5992 3123 ' 573 5060

263396 1594037 311356 104415947 174657 4026117 407615 3166054
o053 T 1824 0 9655 10379 4936 3511 10589 2443
439061 11931447 182209 168671i 305443 4305397 64067 249188
T10562 T 8207 0 4085 | 1041 ° 6418 T 2398 1268 12590 °
206205 2743074 114909 321584 (127)
3863 1263~ 2044 1355

With choice K = 20, with help of symbolic computational tools, it is easy to check that

er < 21521 x 1070, ||Ho|n <12.361, M, <0.1672, e, < 0.00109 ,
€ <4072x 1079, Cp <2.0664, ~1q <13.746, [Bi1 <14.185, f1o<29.342,
Boq < 0.154385 By <1.03303, M, <30.3742, €¢<654x107°, B, <0.00133
(128)

implying that condition for application of Theorem 1 in the main part is satisfied and hence
there exists solution (C, H) near quasi-solution (Cy, Hy) with

|C' = Co| + |H — Holln < 2e<1.308x107* (129)

5 Computed travelling wave profiles

Here we give results of the computed wave profiles corresponding to the results of Figures 2
and 3. This is done for all marked points on each solution branch where existence of solutions
was proved. In all the results shown we depict linearly stable solutions with a blue colour and
unstable ones are coloured red. This way the reader can follow the bifurcations that take place
along individual branches as A increases.

5.1 Wave profiles for » = 1/10 and different R and A

Results are shown in Figures [I}3] corresponding to R = 20, 50 and 100, respectively. The
left panels show branch 1 k£ = 1 solutions, and the right panels the corresponding branch 2
solutions. This is clear from the figures because the former are 2r—periodic and the latter are
m—periodic.
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Figure 1: Hy(z) vs. « for R = 20, v = 1/10. Left: Branch 1, A = 0.302,0.4,0.5,0.6, - - -

Right: Branch 2, A = 1.21,1.3,1.4,---2.2. Blue - stable; Red - unstable.
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Figure 2: Hy(x) vs. « for R = 50, v = 1/10. Left: Branch 1, A = 0.123,0.2,0.3,0.6,- - -

Right: Branch 2, A =0.51,0.6,0.7,0.8,---2.0. Blue - stable; Red - unstable.

=307

3n 0w
4

IS
[SIE]

Figure 3: Hy(x) vs. x for R = 100, v = 1/10. Left: Branch 1, A = 0.065,0.1,0.2,0.3, - - -

Right: Branch 2, A =0.3,0.6,0.7,0.8, - -- 2.0. Blue - stable; Red - unstable.

5.2 Wave profiles for v = 1/20 and different R and A

2.0.

1.2

2.0.

Results are shown in Figures [@}ff] corresponding to R = 20, 50 and 100, respectively. The
left panels show branch 1 k = 1 solutions, and the right panels the corresponding branch 2
solutions. This is clear from the figures because the former are 2r—periodic and the latter are

m—periodic.
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Figure 4: Hy(z) vs. « for R = 20, v = 1/20. Left: Branch 1, A = 0.160,0.2,0.3,0.6,---1.2.
Right: Branch 2, A = 0.602,0.7,0.8, - --1.3. Blue - stable; Red - unstable.
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Figure 5: Ho(z) vs. « for R = 50, v = 1/20. Left: Branch 1, A = 0.07,0.1,0.2,0.3,---1.2.
Right: Branch 2, A =0.25,0.3,0.4,---2.0. Blue - stable; Red - unstable.
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Figure 6: Hy(x) vs. x for R = 100, v = 1/20. Left: Branch 1, A = 0.032,0.1,0.2,0.3,---2.0.
Right: Branch 2, A = 0.136,0.2,0.3,0.4, - - - 2.0. Blue - stable; Red - unstable.
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